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1. Introduction

Dualities in string theory have proved to be powerful tools in our understanding of its

physics. The most studied of these is the AdS/CFT correspondence [1] (see [2] for a review

and references) which states that the N =4, d=4, SU(N) SYM CFT is equivalent to the

type-IIB string theory on AdS5×S5. This being a strong-weak duality to test it one usually

relies on some non-renormalisation theorems. In this context the chiral primary operators

of the CFT, corresponding to BPS states on S3×R via the state-operator correspondence,

played a very important role as their conformal dimensions are protected from quantum

corrections. Under the AdS/CFT correspondence these states are dual to BPS states in

the type-IIB string theory on AdS5×S5. It is well known however that the 1/2-BPS chiral

primary operators have many possible dual descriptions on the string theory side. For small

values of R-charge they are dual to multiparticle supergravity/closed string states. As the

R-charge increases to J ∼ N the point like states are no longer good descriptions and
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they are better described by large D3-branes with the same R-charges. These D3-branes

come in two classes: the giant gravitons [3] and the dual-giant gravitons [4, 5]. The giant

gravitons are central to understanding the ‘stringy exclusion principle’ from the AdS point

of view [3]. For J ∼ N2 new geometries arise [6].

Recently it has emerged that the correlators of 1/2-BPS chiral primaries in the CFT

and the physics of the corresponding dual objects in the bulk are captured by a hermitean

matrix model with a harmonic oscillator potential [7, 8, 6]. In terms of the solution of

this matrix model each chiral primary operator corresponds to a quantum mechanical

configuration of N fermions λi in the single particle spectrum of a harmonic oscillator.

In this paper, to start with, we use the matrix model description to set up a one-to-one

correspondence between configurations of giant gravitons and the states of N fermions in a

Harmonic oscillator and similarly between configurations of dual-giant gravitons and states

of the N fermion system. This gives rise to a dualtiy between configurations of giants and

dual-giants. The correspondence is a consequence of particle-hole duality of the fermion

picture. We also explain how stringy exclusion principle manifests itself in terms of the

dual-giants. Just as there is an upper bound on the angular momentum of a single giant,

it turns out that there is an upper bound, namely N , on the number of dual-giants. This

result agrees nicely with the fermion picture and the duality between giant and dual-giant

configurations. We study some of the interesting consequences of this novel picture.

Next we find the partition function and the asymptotic density of the 1/2-BPS states

from both the CFT and the string theory. On the CFT side this amounts to counting

the fixed energy configurations of N fermions in the single particle harmonic oscillator

spectrum. On the string theory side we count the giant or dual-giant graviton configu-

rations which agrees with the CFT result. We show that this density of states increases

exponentially with the total energy in the large-N limit.

An exponential growth in the number of 1/2-BPS states with energy prompts one

to ask if there is a 1/2-BPS ‘black hole’ in AdS5 which carries this density of states.

Since these states have a high amount of supersymmetry (namely 16 supercharges) their

degeneracies are protected from corrections as one turns on the gravitational back reaction

and hence can be compared with the microstates of an appropriate black hole geometry.

However there are no 1/2-BPS black hole solutions known in AdS5 with finite horizon

area. Instead we propose that this degeneracy of states should be carried by the single

charge ‘superstar’ geometry of [9]. This geometry arises as the extremal limit of the non-

supersymmetric single charge black hole [10, 11] in AdS5. When lifted to 10-dimensional

type-IIB supergravity this solution preserves 16 supercharges and admits an interpretation

as the backreacted geometry of a specific configuration of giant gravitons on S5 (and thus

denoted the ‘superstar’ in [9]). Since it preserves 16 supersymmetries in 10 dimensions one

expects that its microstates should be dual to the 1/2-BPS operators of the N = 4, d=4

SU(N) SYM on the boundary.

The single charge superstar geometry has a null singularity. Classically such singular-

ities can be thought of as black holes with zero size horizons. Well studied examples of

such geometries with flat asymptotes arise as the extremal limits of two charge black holes

in 4 and 5 dimensions which are related to the physics of D1-D5 system. Even though
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classically the area of the horizon is zero, one expects big quantum corrections to the

Bekenstein-Hawking formula, e.g., [12 – 16]. Alternatively such singularities are expected

to get corrected into black holes of finite size horizon once the quantum corrections are

included [17].

Motivated by the arguments advocated by Mathur et. al. (see [18] for instance) in

recent times in the context of D1-D5 systems, we place a stretched horizon in the single

charge superstar geometry in 5 dimensions and show that the Bekenstein-Hawking formula

for the entropy reproduces the predicted answer up to a non-zero number.

A similar analysis is carried out for the null singularities that arise in 4 and 7 di-

mensional gauged supergravities as well. These solutions when lifted to 11-dimensional

supergravity are asymptotically AdS4 × S7 and AdS7 × S4 respectively and preserve 16

supercharges. These again admit interpretation as the backreactions of giants in M-

theory [20, 21] now made of M2 and M5 branes. We exhibit the matching of M-theory

prediction for the entropy with that of the stretched horizon picture.

The rest of the paper is organized as follows. In the section 2 we review some aspects

of 1/2-BPS states in AdS/CFT and the matrix model description of these states. We

argue that N is the upper bound on the number of dual-giants. In section 3 we describe

the above mentioned ‘duality’ between configurations of giants and dual-giants using the

matrix model description. In section 4 we find the partition function of the 1/2-BPS states

using the fermion picture in the CFT and counting the giant graviton configurations on the

string theory side. We use it to calculate the asymptotic density of states in the large-N

limit and show that it grows exponentially with the conformal dimension (equivalently the

R-charge). section 5 contains a review of the geometry of the single charged ‘superstar’ and

some of its features relevant for us. In section 6 we place a stretched horizon and recover

the predicted entropy up to a number. section 7 contains similar results for the M-theory

superstars. In section 8 we discuss some more consequences of the duality between the giant

and the dual-giant configurations. We end with some concluding remarks in section 9.1

2. Chiral primaries and free fermions

Let us start by briefly reviewing the relevant information of the N = 4, d=4, U(N) SYM

theory which is dual to type-IIB string theory on AdS5 × S5 background [1] (see, e.g., [2]

for a review). This theory has a large number of half-BPS operators, namely, the chiral

primaries. These operators belong to (0, l, 0) representation of the R-symmetry group

SU(4) ∼ SO(6). In terms of N = 1 notation, the N = 4 theory has three chiral multiplets

and a vector multiplet. A generic chiral primary can be written as:

(tr(Φl1))k1(tr(Φl2))k2 · · · (tr(Φlm))km (2.1)

where Φ is the complex scalar of one of the three chiral multiplets. The conformal dimension

∆ of these operators equals their R-charge J

∆ = J (2.2)

1Some of the results of sections 2 and 3 were previously obtained in [22] using different methods. We

thank Iosif Bena for pointing out [22].
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Supersymmetry protects the conformal dimensions of chiral primaries from receiving quan-

tum corrections. The operator in (2.1) has

∆ =

m
∑

i=1

liki. (2.3)

For finite N the operators of type (2.1) are independent only if lm ≤ N . The above basis

in eq. (2.1) is approximately orthonormal in the large-N limit [8]. A different orthonormal

basis called the ‘Schur polynomial basis’ was introduced in [7]. A Schur Polynomial χR(Φ)

is the character of the unitary group in a given irreducible representation R. Since the

irreducible representations of the unitary group can be represented by Young tableau one

has a Schur polynomial for each Young tableau. The total number of boxes in a Young

diagram gives the total R-charge J of the corresponding chiral primary.

The correlation functions of chiral primaries in this basis have been calculated to all

order in 1/N and at the tree level in λ, the ’t Hooft coupling in [7].2 There, a matrix model

with a harmonic oscillator potential was proposed to capture the correlation functions of

chiral primaries. This matrix model can be obtained as a truncation of the d=4 SYM on

S3×R down to the zero modes over S3 in the weak coupling and keeping just one complex

scalar Φ [8]. This model was further studied in [8, 24, 6]. Some relevant features of this

are briefly reviewed below.

As it has been explained in [7, 8] (see also [25]) the matrix model can be reduced to the

quantum mechanics of N fermionic eigenvalues λi of the matrix in a harmonic oscillator

potential. The hamiltonian of this system is

H =

N
∑

i=1

(

λ†
iλi +

1

2

)

. (2.4)

Each stationary state of this quantum mechanics is given by a configuration of N -fermions

in the harmonic oscillator energy spectrum Ej = j + 1/2, j = 0, 1, . . .. Since there are N

fermions the vacuum energy is E0 = 1
2 + 3

2 + · · · + 2N−1
2 = N2

2 .

The Hilbert space is spanned by N -particle states labeled by N single particle levels fk

or an N -vector ~f = (f1, f2, . . . , fN ) where 0 ≤ f1 < f2 < . . . < fN . The eigenvalue of the

N -particle hamiltonian (2.4) on this state is E = N
2 +

∑N
k=1 fk. We choose to measure the

energies of the states to be the difference of the full energy and the ground state energy:

∆ = E − E0.

Note that each excitation of the fermion system can be mapped uniquely to a U(N)

Young tableau and thus a representation R of U(N). This is done by mapping the particle

excitations to successive rows of the tableau. In our case since there are N fermions, the

Young tableau contains a maximum of N rows. The number of boxes in the kth row is

fk−(k−1). Therefore each chiral primary written in the Schur polynomial basis corresponds

to a unique configuration of the fermion system [7, 8]. We will make use of this fermion

picture later on.

Let us next turn to the string theory duals of chiral primaries.

2See [23] for a discussion of these correlators for the gauge group SU(N). We will however continue to

use gauge group U(N) as we will be interested in only large-N limits for most part.
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2.1 Giants and dual-giants

As mentioned in the introduction the chiral primary operators have many possible dual

descriptions on the string theory side. For small values of R-charge they are dual to super-

gravity modes. However as the R-charge increases J ∼ N the duals are better described

semiclassically by D3-brane configurations with the same R-charges. Further, these D3-

branes come in two classes: the giant gravitons [3] and the dual-giant gravitons [4, 5].

We will be interested in counting the duals of chiral primaries later on. So to avoid over-

counting we have to restrict ourselves to either counting the supergravity KK modes or

the giant D3-branes. Since we are interested in states with very large R-charge we choose

the giant D3-brane basis. It turns out that we should not count giant and dual-giant

configurations separately as there is a ‘duality’ relating both.

Let us now briefly review some relevant aspects of the giant and the dual-giant gravitons

in type-IIB string theory on AdS5 × S5. Giant gravitons [3] are D3-branes wrapping an

S3 inside the S5 and rotating along one of the transverse directions within the S5. They

preserve 16 of the 32 supersymmetries3 of AdS5 × S5. Let us work with the following

coordinate system for AdS5 × S5 in global coordinates.

ds2
AdS5

= −
(

1 +
r2

L2

)

dt2 +
dr2

1 + r2

L2

+ r2dΩ2
3, (2.5)

ds2
S5 = L2

(

dα2 + sin2 α dβ2 + cos2 α dξ2
1 + sin2 α

[

cos2 β dξ2
2 + sin2 β dξ2

3

])

. (2.6)

Here the ranges of the coordinates are: 0 ≤ r < ∞, 0 ≤ α, β ≤ π/2, and 0 ≤ ξi ≤ 2π for

i = 1, 2, 3. Further assume that the D3-brane wraps the S3 ⊂ S5

ds2
S3 = L2 sin2 α

[

dβ2 + cos2 β dξ2
2 + sin2 β dξ2

3

]

(2.7)

and rotates along the ξ1 direction. The angular momentum of a single such D3-brane is

given by

Pξ1 = N sin2 α. (2.8)

Thus we have Pξ1 ≤ N which realises the stringy exclusion principle.

On the other hand the dual-giant gravitons [4, 5] are D3-branes wrapping S3 ⊂ AdS5

and rotating along a maximal circle of S5. They again preserve 16 supercharges of the

background and carry D3-brane dipole moment. For a given angular momentum Pξ1 the

radius r at which the D3-brane stabilises is given by

r = L

√

Pξ1

N
(2.9)

where L is the radius of AdS5. Since the radial coordinate r ranges from 0 to ∞ the

dual-giants can have arbitrary (integer valued) angular momenta.

This raises the question of how the stringy exclusion principle manifests itself for the

dual-giants. To answer this let us note a subtle effect which restricts the total number of

3There are also giant gravitons that carry more than one R-charge which are 1/4 or 1/8 supersymmet-

ric [26]. We will not consider these configurations here.
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dual-giants that one can place in AdS5 × S5 (see also [22]). Since a dual-giant occupies

three of the four spacelike coordinates in AdS5, it acts like a domain-wall and the flux of

F (5) measured on either side of this domain-wall differs by one unit with the lesser value

on the inside of S3 that the dual-giant wraps [5]. So if we have m dual-giants in AdS5 the

F (5) flux measured inside the inner most dual-giant will be N − m units. For m = N the

five form flux inside the innermost dual-giant vanishes. Since it is crucial to have non-zero

flux to stabilise a dual-giant at a non-zero radius and to produce a geometry where there

are closed orbits4, it follows that we can not have any more dual-giants in the system. This

is the manifestation of ‘stringy exclusion principle’ for the dual-giants.

Next we propose a one-to-one map among configurations of giants and configurations

of dual-giants using the fermion picture coming from the CFT.

3. Mapping branes and fermions

In a quantum theory one expects that Pξ1 is quantised. Hence the allowed values of α would

be discrete such that Pξ1 takes values 0, 1, 2, . . . , N . A general configuration of giants is

then given by an N -vector ~b1 = (r1, r2, . . . , rN ) where the integers rk ∈ [0,∞) denote

the number of giant gravitons with angular momentum Pξ1 = k. The total energy (and

therefore the angular momentum) of this configuration is
∑N

k=1 k rk.

Taking this into account a general configuration of dual-giants is also given by an N -

vector ~b2 = (s1, s2, . . ., sN ). Here the integers sk are such that 0 ≤ sN ≤ . . . ≤ s1 < ∞
and sk denotes the angular momentum of the kth dual-giant away from the boundary of

AdS5. The total energy of this configuration is given by H~b2
=

∑N
k=1 sk.

To summarise, a configuration of the N fermion system is specified by an N -vector
~f = (f1, f2, . . ., fN ) with 0 ≤ f1 < f2 . . . fN ≤ ∞ and fi denoting the level number of the

ith fermion. The total energy of such a configuration is

H~f
= −N(N − 1)

2
+

N
∑

k=1

fk. (3.1)

A configuration of giant gravitons is specified by another N -vector of integers ~b1 = (r1, r2,

. . ., rN ) with 0 ≤ rk ≤ ∞. Each rk denotes the number of giant gravitons at level-k in the

N -level system. The energy of this configuration is

H~b1
=

N
∑

k=1

krk. (3.2)

The dual-giant graviton system is described by yet another N -vector of integers ~b2 =

(s1, s2, . . . , sN ) with s1 ≥ s2 ≥ . . . ≥ sN ≥ 0. Each sk denotes the angular momentum of

the kth dual-giant D3-brane away from the boundary of AdS. The energy of this system is

H~b2
=

N
∑

k=1

sk. (3.3)

4I thank Rob Myers for suggesting this argument.
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A fermion configuration can be specified either in terms holes or particles. We first observe

that each hole can be associated with a giant graviton and each particle with a dual-

giant graviton. For instance a hole at the level-0 (the ground state of the single particle

harmonic oscillator Hilbert space) can be thought of as the one in which all the N particles

are excited by one energy level each. As explained in [8], a hole at the level-0 is dual to

a single giant graviton with the maximum possible angular momentum N . On the other

hand in terms of dual-giants this excitation corresponds to having N dual-giants with one

unit of angular momentum each. Of course the description in terms of a single giant is a

better one as the probe brane approximation will be valid. Similarly consider an excitation

of the topmost fermion by n levels. This, as in [8] can be thought of as a dual-giant with

n units of angular momentum. But this can also be associated with a configuration of n

smallest size giant gravitons. Again the former would describe the system better than the

latter. Similarly one can analyse a given configuration of fermions and associate a unique

giant or a dual-giant configuration with it. Doing this we find the following maps between

the fermion configurations and the giant and the dual-giant configurations:

rN ↔ f1, rN−i ↔ fi+1 − fi − 1, i = 1, 2, . . . , N − 1

sN−i ↔ fi+1 − i, i = 0, 1, . . . , N − 1 (3.4)

Clearly under these identifications the hamiltonians of the systems match along with the

restrictions on the vectors ~f , ~b1 and ~b2. Since there is a single fermion configuration for

either of the two bosonic (giant and dual-giant) configurations it is natural to conjecture

that the two bosonic systems should be ‘dual’ to each other with the following mapping:

si ↔
N

∑

k=i

rk, i = 1, 2, . . . , N (3.5)

This ‘duality’ map of (3.5) between the configurations of giants and dual-giants is a direct

result of the duality between descriptions of the fermion system in terms of particles or

holes.5 Recall that each fermion configuration is uniquely determined by a Young tableau.

Using (3.4) the number of boxes in each row can be identified with the corresponding sk.

Therefore a given Young tableau can be associated uniquely to a specific configuration of

dual-giants with the number of boxes in the kth row giving the angular momentum of the

corresponding dual-giant. The fact that there are a maximum of N rows reflects the fact

that there is an upper bound on the number of dual-giants. This is the particle description

of the fermion system.

On the other hand the same fermion configuration can be equivalently described by

holes. And the hole excitations can also be described by the same Young tableau. This

picture can be associated with a configuration of giants with each column representing a

giant graviton and the number of boxes in that column being its angular momentum. This

type of a duality when applied to M-theory context would mean that some configurations

of giants made of M5 (M2) branes in AdS4 ×S7 (AdS7 ×S4) are dual to the corresponding

5The relation in eq. (3.5) for the case of single non-vanishing rk was proposed earlier in [22].
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configurations of dual-giants made of M2 (M5) branes. A similar duality has already been

proposed by [28] in the context of M-theory in a pp-wave background.

Even though there are dualities between different descriptions of chiral primaries on

the string theory side, one has to keep in mind that for most of the situations only one of

the three candidates, namely the point like KK modes, the giant gravitons or the dual-giant

gravitons is a good description but not all. In some cases none of them alone describes

the true physics in which case one has to work with the full supergravity solution [6]. We

next turn to enumerating the 1/2-BPS states and finding their asymptotic degeneracies for

fixed ∆ (J).

4. Asymptotic densities of 1/2-BPS states

One can write down a generating function to summarise the number of independent chiral

primary operators for a given ∆. One can check that the function

ZN (q) =
N
∏

n=1

(1 − qn)−1 =
∞

∑

∆=0

d∆q∆ (4.1)

fits the bill where q = e−β and d∆ gives the number of independent chiral primaries with

conformal dimension ∆. This partition function can be calculated in many ways. Before

analysing (4.1) further for the asymptotic density of states let us derive this from the

matrix model by counting the fermion configurations and from string theory by counting

the configurations of giant gravitons.

4.1 Partition function from the matrix model

The partition function of the system of N fermions in a harmonic oscillator potential is [25]:

ZN (q) = q−
N2

2 Tr qH = q−
N2

2

∞
∑

f1=0

∞
∑

f2=f1+1

· · ·
∞
∑

fN=fN−1+1

q
PN

n=1
(fn+ 1

2
) (4.2)

with q = e−β. To perform the sums we make the following change of variables: rN = f1,

rN−i = fi+1−fi−1 for i = 1, 2, . . . , N −1. In terms of the new variables eq. (4.2) becomes

ZN (q) =
∞
∑

r1=0

∞
∑

r2=0

· · ·
∞
∑

rN=0

q
PN

j=1
j rj (4.3)

which can be summed easily to get

ZN (e−β) =
∑

J

d∆e−β∆ =

N
∏

n=1

1

1 − qn
. (4.4)

Here ∆ = J is again the total U(1) R-charge and d∆ is the degeneracy of states with fixed

∆. So we have recovered the partition function of chiral primaries (4.1) using the matrix

model.
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4.2 Partition function from giants

As discussed earlier in section 2.1 there are three different known duals of 1/2-BPS states

of the SYM. We choose to count the giant and the dual-giant configurations. Invoking the

‘duality’ of section 3 between configurations of giants and dual-giants we can simply choose

to count giant graviton configurations. It is clear that counting the dual-giants will give

identical results.

It is known from [29] that there are no 1/2-BPS fluctuations of the giant gravitons and

therefore it is sufficient to treat these as simple particles. Thus the problem of counting the

giant graviton configurations reduces to that of counting the configurations of bosons in an

equally spaced N -level system. As explained earlier a general configuration of the giants is

labeled by N integers ~b1 = (r1, r2, . . . , rN ). The total R-charge of such a configuration is:

Pξ1 |~b1〉 =

(

N
∑

k=1

krk

)

|~b1〉. (4.5)

Thus counting the number of giant graviton configurations with a fixed total angular mo-

mentum again reduces to the problem of partitions of an integer Q =
∑N

k=1 krk. The

partition function of this problem is

ZN (q) =
∑

r1,...,rN

q
PN

k=1
krk

=

N
∏

k=1





∞
∑

rk=0

qkrk



 =

N
∏

k=1

1

1 − qk
(4.6)

where q = e−β. Of course this is precisely the same partition function eq. (4.4) obtained

from the CFT (matrix model) side.

4.3 The asymptotic degeneracy and the entropy

To further analyse ZN (q), define the free energy

F (q,N) = ln ZN (q) = −
N

∑

n=1

ln(1 − e−β n)

= −
∞

∑

n=1

ln(1 − e−β n) +
∞
∑

n=N+1

ln(1 − e−β n)

= ln Z∞(q) +
∞
∑

p=1

1

p

e−β(N+1)p

1 − e−βp
. (4.7)

Using eq. (4.7) we can write ZN (q) as

ZN (e−β) =
e−

β

24

η(e−β)
exp





∞
∑

p=1

1

p

e−β(N+1)p

1 − e−βp





=
e−

β

24

η(e−β)

[

1 + O(e−β (N+1))
]

(4.8)
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where η(q) is the standard Dedikind’s eta function: η(q) = q
1

24

∏∞
n=1(1− qn). In the large-

N limit, we can neglect the O(e−β (N+1)) corrections to ZN (q) and we will do so for the

rest of this paper.

From eq. (4.1) d∆ is given by:

d∆ =
1

2πi

∫

C
dβ eβ∆ ZN (e−β) (4.9)

We are interested in extracting d∆ for large-∆ and N . Substituting the leading value of

ZN (q) from eq. (4.8) into eq. (4.9) we have

d∆ =
1

2πi

∫

C
dβ

eβ(∆− 1

24
)

η(e−β)
. (4.10)

The asymptotic density d∆ for large ∆ can be found using the standard methods in the

saddle point approximation to find:

d∆ ≈ 1

4
√

3 ∆
e
π

q

2∆

3 . (4.11)

Thus the density of the 1/2-BPS states grows exponentially. From eq. (4.11) the Boltzman’s

entropy formula S = ln d∆ gives

S =

(

2π2

3

)1/2 √
∆ + · · · (4.12)

where · · · are the corrections negligible in the large-N and large-∆ limit (with N À
√

∆)

which we drop henceforth.

Thus we see that if there is a physical system with the 1/2-BPS states as its microstates

then it is expected to have a macroscopic entropy for large ∆. So it is natural to ask

whether there is a candidate in the bulk AdS5 which carries this entropy. The dual should

be asymptotically AdS5, should preserve 16 supercharges when lifted to a 10-dimensional

solution and carry just one U(1) R-charge. There are no BPS black holes with these

properties and with finite size horizons in AdS5. Instead in what follows we propose that

the single charge ‘superstar’ of [9] should have this entropy.

5. The R-charge black holes in AdS5 and the superstar

Let us review the relevant ‘superstar’ solution of N = 2, d = 5 gauged supergravity and

its 10-dimensional lift. The bosonic field content of the 5-dimensional gauged supergravity

is the metric, two scalars parametrised by Xi, i = 1, 2, 3 satisfying X1X2X3 = 1 and three

abelian gauge fields Ai. The theory admits non-extremal charged black holes [10, 11]:

ds2
5 = −(H1H2H3)

−2/3fdt2 + (H1H2H3)
1/3(f−1dr2 + r2dΩ2

3),

Xi = H−1
i (H1H2H3)

1/3, Ai = (H−1
i − 1)dt, (5.1)

where

f = 1 − µ

r2
+

r2

L2
H1H2H3, Hi = 1 +

qi

r2
. (5.2)
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Here µ is the non-extremality parameter, L is the radius of the asymptotic AdS5 and qi

determine the independent U(1)3 charges. As noted in [9], the area of the horizon shrinks

as µ decreases. There is a qualitative difference between the case when only one charge

is non-vanishing , e.g., q1 6= 0, q2 = q3 = 0, and the case when more than one charges

are non-vanishing. If only q1 is non-zero then the horizon shrinks to zero size precisely

when µ → 0 and the solution becomes BPS with a null singularity. For the other cases

the horizon shrinks to zero size for some nonzero µ = µcrit leaving behind a naked timelike

singularity as µ → 0.

Since we are interested only in the extremal solution and with just one U(1) R-charge

we will set q1 = Q, µ = q2 = q3 = 0 where Q 6= 0. This single charge BPS solution lifts to a

solution of 10-dimensional type-IIB supergravity [30, 9] which admits 16 supersymmetries.

By analysing the dipole moment of the five form F (5) the authors of [9] concluded that

the 10-dimensional solution can be interpreted as the condensate of giant gravitons with

angular momentum along ξ1 and with a density of branes along α given by

dn = N
Q

L2
sin 2α dα. (5.3)

The total number of giant gravitons is

ntot = N
Q

L2
(5.4)

and the total angular momentum of the system is

Pξ1 =
N2

2

Q

L2
. (5.5)

In terms of the giant graviton configurations counted in section 3, the density of giants in

eq. (5.3) is given by rk = Q/L2 for all k in the continuum limit.6

This geometry was named the ‘superstar’ in [9]. This solution satisfies all our require-

ments except that it has an uncloaked null singularity. Nevertheless one may think of the

5-dimensional geometry as a black hole with a zero size horizon. On general grounds one

expects that the Bekenstein-Hawking entropy formula for this geometry to get corrected

in the quantum theory. As in the recent developments in the asymptotically flat 2-charge

extremal black holes [16, 17] it is conceivable that one recovers the finite entropy for the

superstar geometry too after quantum corrections. However this analysis is outside the

scope of this paper. Instead what we do here is to follow the reasoning of [12, 18, 19] and

place a stretched horizon in our geometry.

6. Stretched horizon and the entropy of superstar

Recall that the total R-charge of the single charge superstar is

Qtotal =
N2Q

2L2
(6.1)

6This interpretation can be translated into the fermion picture using (3.4) and recover the phase space

diagram proposed in [6, 37] corresponding to the superstar geometry in the continuum limit.
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Substituting this into eq. (4.12) we get the entropy prediction for the 1/2-BPS black hole

coming from both the CFT and string theory:

SBH =

(

π√
3

)

N
√

Q0 (6.2)

where we have defined Q0 = Q/L2. For large-N and for any finite value of Q0 this entropy

is macroscopic. Next we would like to reproduce this answer using the mechanism of

stretched horizon for the single charge superstar geometry.

A stretched horizon in the context of heterotic string compactified down to four di-

mensions has been defined first in [12] as the place where the string world-sheet becomes

strongly coupled. However this is the correct prescription if the leading corrections to the

corresponding black hole geometry come from the α′ corrections to supergravity as opposed

to string loop gs corrections. For black holes in AdS the two relevant expansion param-

eters are 1/N (or the 10-dimensional plank length measured in units of the AdS radius

as l8pl/L
8 ∼ N) and λ (or the α′ measured in units of AdS radius as L4/α′2 ∼ λ). If the

dominant correction to the geometry comes from plank length corrections then a D3-brane

probe which sees the effects of finite N is more appropriate than a fundamental string.

However, a priori it is not evident which type of corrections are dominant in our case.

A different point of view has recently been advocated by Mathur and collaborators

(see [18, 19] for instance). Here the basic idea is that the brane system that makes up

the black hole has a nonzero size. Further, there are some excitations of the brane system

which makes up the black hole that can spread over long distances compared to the relevant

fundamental length. One has to place a stretched horizon so that these fluctuations are

inside it. Typically this length scale is set by the smallest possible excitation of the system.

We shall use this argument below.

In our case each microstate of the superstar geometry can be thought of as a giant

graviton configuration with fixed total R-charge. This system is also expected to have a

finite size. The source of this finite size can be traced to the configuration of fermions

in the phase space representation of [8, 6]. There, one may think of the system as an

incompressible fluid. Any excited state requires creating holes in the fermion droplet and

therefore the droplet spreads over a larger area. This spreading directly translates into a

spread in the radial direction in the AdS space using the results of [6]. To estimate the

extent of a given microstate let us note that the lightest excitation of the giant graviton

system is to add a single unit of angular momentum. This can be done by adding a single

giant graviton to any of the microstate configurations of giants at level-1 (or shift a giant

graviton from level k to k+1). We have to convert this energy into a length scale. Roughly

speaking if we use this energy to create a dual-giant graviton then the length scale that

sets the size of this dual-giant, in this case given by L/
√

N , should also set the size of the

stretched horizon.

From the point of view of the fermion system the smallest excitation is to excite the

topmost fermion by one energy level.7 It is easy to see from the analysis of [6] that to

7This excitation can be thought of as creating a smallest size giant graviton or equivalently a smallest

size dual-giant with a unit of R-charge as in section 3.
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accomplish this operation it costs energy of order N and the disturbance of this excitation

is δR ∼ L2/N where R = µ1L
2(1 + r2/L2)1/2 [6] with R being the radial coordinate in the

phase space and µ1 = cos α. So we see that supergravity solutions of two configurations

of giants which differ by this excitation roughly differ from each other within the range of

0 ≤ r ≤ c0L/
√

N where c0 is a pure number.

Following the analogy of [18, 19] we postulate that the size of the stretched horizon

is determined by the same length scale that sets the size of a dual-giant. Therefore we

propose to place the stretched horizon at:

r0 =
c0L√

N
(6.3)

where c0 is a pure numerical coefficient.

Substituting q1 = Q µ = q2 = q3 = 0 into (5.1) the 5-dimensional metric of the single

charge superstar reads

ds2
5 = −H−2/3

(

1 +
r2

L2
H

)

dt2 + H1/3

[

dr2

1 + r2

L2 H
+ r2dΩ2

3

]

(6.4)

where H = 1 + Q
r2 . We assume that Q0 = Q/L2 ¿ 1 so that the metric is asymptotically

globally AdS5. The metric on a space-like surface at the position r = r0 is:

ds3
horizon =

(

1 +
L2Q0

r2
0

)1/3

r2
0dΩ2

3 (6.5)

where dΩ2
3 is the metric on a unit 3-sphere S3. The area of the stretched horizon becomes:

A ≈ c2
0 VolS3

L3Q
1/2
0

N
. (6.6)

The 5-dimensional Newton’s constant is given by:

GN =
8π3g2

sα
′4

L5
∼ L3

N2
(6.7)

Then using the Bekenstein-Hawking entropy formula we get:

SBH ∼ Ash

GN
∼ c2

0

(

L4

Ngsα′2

)2

N
√

Q0 ∼ C0 N
√

Q0. (6.8)

Up to a numerical coefficient this precisely matches with the entropy prediction (6.2) of

the gauge and string theory microstate counting.

Even though we relied on the D3-brane probe analysis to get the size of the stretched

horizon in the superstar geometry, it is clear that if we demanded the entropy of 1/2-BPS

states in eq.(33) to be carried by the superstar geometry and worked backwards to find

the location of the stretched horizon, we would have ended up with the same answer as in

eq.(34). So we can take this as an evidence for the appropriateness of the D3-brane probe

as opposed to the fundamental string probe.
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7. M-theory examples

Let us also consider similar singular geometries in the M-theory examples AdS4 × S7 and

AdS7 × S4. An analysis on lines of [9] was carried out in [20, 21].

7.1 Superstar in AdS4 × S7

The black hole in this case can carry four charges. We again restrict ourselves to the single

charge extremal limit. The 4 dimensional solution is [31, 32]:

ds2
4 = −H1/2f dt2 + H1/2(f−1dr2 + r2dΩ2

2),

X1 = H−3/4, X2 = X3 = X4 = H1/4, A = (1 − H−1) dt (7.1)

where

f = 1 +
r2

L2
4

H, H = 1 +
Q

r
. (7.2)

This solution also has a null singularity at r = 0 and admits an interpretation [20, 21] as

a backreaction of a source of giant gravitons now made out of M5 branes wrapping some

S5 ⊂ S7 and carrying angular momentum. We refer the reader to [20, 21] for the details

of this analysis and be content here with a summary. The total number of giants is

n = 21/2N1/2 Q

L4
(7.3)

and the total angular momentum of the solution is:

Pξ1 =
2N3/2

3
√

2

Q

L4
. (7.4)

The 4-dimensional Newton’s constant is:

G4 ∼ L2
4

N3/2
. (7.5)

There exist dual-giants made of M2 branes wrapping the S2 ⊂ AdS4 and carrying angular

momentum in S7. The sizes of these are [4]:

r =
L4√
N

Pξ1

2
. (7.6)

Using the hypothesis that the stretched horizon is to be placed at a length scale decided

by the size of the dual-giant we set:

r0 =
c0 L4√

N
. (7.7)

where c0 is again a pure number. Using the metric above it is easy to calculate the area of

this horizon and we find:

Ash ∼ c0L
2
4

N3/4

√

Q0 (7.8)
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where we have defined Q0 = Q/L4. This implies:

S
(4)
bh ∼ Ash

G4
∼ N3/4

√

Q0. (7.9)

Even though there is no lagrangian description for the dual field theory to get a prediction

for this entropy one can treat the chiral primaries again using the picture of fermions in a

harmonic oscillator potential. One can also do a counting of giants or dual-giants on the

lines of section 4.2 and the answer for the partition function comes out similar to eq. (4.12).

Therefore the prediction from the CFT and the M-theory side for the entropy of our black

hole is again:

S = C
√

∆ + · · · (7.10)

where · · · again mean corrections which are small in large-N and large-∆ limit. Substituting

Pξ1 from eq. (7.4) for ∆ in eq. (7.10) gives precisely the same functional dependence of the

entropy (7.9) on the charge Q0 and N .

7.2 Superstar in AdS7 × S4

There exists a similar null singularity with 16 supercharges in this background as well. The

solution in 7 dimensions is [31, 32]:

ds2
7 = −H−4/5f dt2 + H1/5(f−1dr2 + r2dΩ2

5),

X1 = H−3/5, X2 = H2/5, A = (1 − H−1) dt (7.11)

where

f = 1 +
r2

L2
7

H, H = 1 +
Q

r4
. (7.12)

The total charge of this solution is Pξ1 = (2N3Q)/(3L4
7) ∼ N3Q0 where Q0 = Q/L4

7.

The size of a dual-giant is r ∼ P
1/4
ξ1

(L7/
√

N) and the 7-dimensional Newton’s constant

is G7 ∼ L5
7/N

3. Using the same hypothesis that the position of the stretched horizon is

determined by the length scale that determines the size of the dual-giant L7/
√

N , we again

take r0 = c0
L7√
N

to be the horizon radius. Then the entropy works out to be:

S
(7)
bh ∼ N3/2

√

Q0 (7.13)

which again matches (up to non-vanishing numerical factors) with the prediction coming

from counting the corresponding giant configurations with the total angular momentum

Pξ1 = (2N3Q)/(3L4
7) ∼ N3Q0. Thus we conclude that the null singularities of M-theory

should also be genuine black holes at the quantum level.

8. More consequences

Let us state some of the consequences of the duality considered in section 3. Suppose we

start with the configuration of all N fermions being in their ground state. This represents

the vacuum state of the dual geometry, namely, empty AdS5 × S5 [8, 6]. Now consider
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a generic fermion excitation. This is represented by AdS/CFT either by a configuration

of dual-giants or by a configuration of giants. But both correspond to describing the

same fermion system either in terms of particles or in terms of holes both of which should

be equivalent. This leads to the statement that a given giant configuration is equivalent

to a corresponding dual-giant configuration. However similar to the fermion system the

corresponding supergravity solutions would also have to be identical.

Another consequence is the following. Again start with a giant graviton configuration

labeled by ~b1 = (r1, r2, . . . , rN ). Now consider adding a dual-giant to this system. Since

giants are holes in the fermion picture the topmost fermion is away from its ground state

position N − 1 and this distance is given by the number of holes. As a consequence to

excite the kth fermion we have to have

sk >

N
∑

i=k

ri. (8.1)

For k = 1 this implies that a dual-giant will have a non-zero radius only when its angular

momentum s1 exceeds the total number
∑N

i=1 ri of the giant gravitons. Let us test this

prediction in a simple context.

To test this prediction we generically need the backreacted geometry of the giant

configuration under consideration. Below we work with the single charge superstar which

contains a total of NQ0 D3-branes. So if we try to place a dual-giant D3-brane as a probe

in this background it should not have a non-zero radius unless the angular momentum of

the dual-giant exceeds NQ0.

Fortunately the probe brane analysis in question has already been studied in [9]. We

summarise the results here. For a given angular momentum Pξi
in S5 the equations of

motion for the world-volume theory are satisfied if the radius r and the angles α, β satisfy

the following relations:

r2

L2
=

3
∑

i=1

(

Pξi

N
− qiµ

2
i

L2

)

,

µ2
i =

Pξi

N − qiµ
2
i

L2

∑3
j=1

(

Pξj

N − qjµ2
j

L2

) . (8.2)

Let us specialise to Pξ2 = Pξ3 = 0 and q2 = q3 = 0. Then the second of the equations (8.2)

can be solved if µ1 = 1 and µ2 = µ3 = 0. That is α = π/2. Substituting these into the

first equation gives:
r2

L2
=

Pξ1

N
− q1

L2
(8.3)

That is, the typical radius at which the dual-giant settles down is:

r =
L√
N

[

Pξ1 −
Nq1

L2

]1/2

=
L√
N

[Pξ1 − NQ0] (8.4)

Thus we see that the dual-giant will have non-vanishing radius only when its angular

momentum exceeds the total number of giants NQ0 as predicted. Similar predictions
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apply for the M-theory cases as well and one can verify them using the probe brane analyses

of [21]. One should be able to verify this prediction further by probing various supergravity

solutions presented in [6] with D3-brane configurations with angular momenta. We will

not do this here however.

It follows from section 3 that M giant gravitons with angular momentum N are dual

to N dual-giants with M units of angular momentum each. However depending on how

big the values of M and N are relative to each other it should be possible to think of either

M or N as the number of giants/dual-giants in the supergravity background of the other.

A similar ‘correspondence principle’ was proposed in [20].

9. Conclusion

In this paper we reconsidered the 1/2-BPS configurations on both the gauge theory and

string theory sides of the AdS/CFT correspondence. We have argued that there is an upper

limit on the number of dual-giants one can place in AdS5 × S5. Using the fermion picture

that arises from the matrix model truncation of the gauge theory we have set up a mapping

between the configurations of fermions, giants and the dual-giants. These important maps

provide two different ways of bosonising the fermionic quantum mechanical system.8 This

leads to a duality map between giant graviton configurations and the dual-giant graviton

configurations which is hinted at by [28] in the M-theory context. As has been discussed

in the text this duality is the direct consequence of particle-hole duality of the fermion

description of the 1/2 BPS spectrum of the CFT. From the bulk point of view this is

a duality between various semi-classical D3-brane configurations and is important in a

avoiding over counting the 1/2-BPS states in the bulk. Some other consequences of the

mapping proposed have also been tested in simple cases in section 8.

Further, we found the partition function of the 1/2-BPS states both by counting the

chiral primaries using the matrix model and various giant graviton configurations which

match. The density of 1/2-BPS states is shown to grow exponentially with the total R-

charge. Then we proposed that this density of states should be carried by the single charge

‘superstar’ geometry of [9]. A stretched horizon was proposed and shown to reproduce

the entropy predicted by both the CFT and the string theory microstate counting. Since

the size of the minimal dual-giant probe gave the correct location of the stretched horizon

it suggests that the plank length (or 1/N) corrections are more dominant than the α′

corrections. It is possible that the α′ corrections could be relevant for the subleading

corrections to the entropy formula.

One might ask why the superstar geometry should be the relevant classical limit of the

R-charged supersymmetric black hole. For this let us reiterate that the superstar geometry

is the only known 1/2-BPS geometry which is a solution to a 5-dimensional (gauged)

supergravity and it is the geometry that arises as the extremal limit of a non-extremal

5-dimensional R-charged black hole. More importantly this is emerges as the limiting

geometry of the supersymmetric black hole solutions with finite size horizons constructed

8This bosonization has been proved at the level of operators acting on the corresponding quantum

mechanical hilbert spaces recently in [39].
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in [34, 35] when the extra charges in their solutions are turned off. It will however be

interesting if one can argue more concretely for the conjecture that the superstar carries

the entropy coming from the degeneracy of chiral primaries on the lines of [16, 17]. This

will require Wald’s formula [13] for entropy applied to gauged supergravities.

In recent times a new understanding of the notion of stretched horizon has been pro-

vided by Mathur et al (see for instance [18]). It will be interesting to see if a similar picture

to the D1-D5 system emerges even for the geometries considered here. In particular, one

should be able to extract the relevant microstate geometries from those found recently

in [6]. One must then be able to ‘coarse-grain’ over these geometries and get the entropy

formula. See [33] for a related discussion.

The partition function of 1/2-BPS states in the N → ∞ limit matches with that of

the 2-dimensional CFT of a single chiral boson (see for instance [40, 25]). It would be

interesting to explore this relation further (see also [37]).9

A class of supersymmetric black holes in AdS5 with finite area horizons of spherical

topology have been discovered recently [34, 35]. When lifted to 10 dimensions they preserve

just two supersymmetries [36]. Of course understanding their entropies from the CFT side

remains an important outstanding problem. See [37] for a discussion on the microstate

counting of the near extremal R-charge black holes in AdS.
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